Activity lead Marcus Wilkerson keeps an eye on the approaching ISS as local news teams shoot the action.

Engineers Jessica Bowles-Martinez, Jordan Padams, Galen Hollins man OPALS mission control. The monitors show real-time camera feed of the OPALS payload from an external camera on the ISS, feed from the Optical Communications Telescope Lab (OCTL) telescope ground station camera, gimbal pointing information, and laser output power.

The ISS, with externally mounted OPALS, approaching the ground laser beacon.

Mission manager Matt Abrahamson keeps a nervous eye on the clock.

The ISS inches closer to the laser beacon from the ground telescope. The blue circle is the OCTL telescope field of view. The green line is the OPALS payload field of view. The yellow line is the planned ground path of the ISS.

Project systems engineer Bogdan Oaida holds a model of the two-axis gimbal while explaining OPALS signal tracking system.

ISS/OPALS encounters the ground laser beacon.

Boom! Success as OPALS signal locks on the ground laser beam and transmits the video. The downlink took 3.5 seconds by laser, where it would have taken 10 to 15 minutes by radio waves.

Abrahamson applauds the successful downlink.

And now, more waiting as the data signal processes.

ISS systems engineers Lauren White and Rob Witoff clown around in celebration. The peanuts have been a JPL talisman since 1964, when— after many failed attempts— Ranger 7 became the first U.S. space probe to successfully transmit lunar surface images back to Earth. Someone noticed an engineer had been eating peanuts at the time, so they were deemed good luck for all future missions.

And finally…a screening of the transmitted video, Hello World to enthusiastic applause.


Beam Me Down, Scotty! NASA Can Now Send HD Video From Space (Really Fast)

NASA took a giant leap in space communications when Jet Propulsion Laboratory engineers transmitted HD video from the International Space Station to Earth by laser instead of radio waves. "It’s like going from dial-up to broadband," says mission manager Matt Abrahamson.

Space has just gotten broadband.

Long after NASA’s Jet Propulsion Laboratory closed down for the night of June 5, a dozen or so engineers waited anxiously for the International Space Station to fly over Los Angeles.

On board was a laser poised to transmit—for the first time—an original high-definition video, Hello, World, at 100 to 200 times the speed of conventionally used radio waves. If successful, the demonstration would help overhaul space communications—a key element in increased interplanetary exploration.

"On the ground, we made an upgrade from dial-up modem to fiber optics a decade ago, and now it’s time to do that with space," said Matt Abrahamson, mission manager for the project, known as Optical Payload for Lasercomm Science (OPALS). "A lot of us have been with this project for five years. It started with an idea and today it’s real."

OPALS began in 2009 as part of a larger NASA effort to handle increasing amounts of data returning from near-Earth and deep-space missions, by relaying back home through optical rather than radio communications. OPALS transmits in the infrared (1550 nm), a faster frequency that can hold more data than radio waves. So, where spacecraft now send data via radio waves at a few hundred Kbps, OPALS transmitted at 50 Mbps. (By comparison, cable Internet companies advertise fiber optics speeds up to 15 Mbps.) "We’ll ramp up the data rate from there, to a couple hundred megabits per second," said Abrahamson. "Future systems will go up to gigabits per second. The Mars rover streaming HD video live—that’s what we want to get to."

Mission manager Matt Abrahamson and team applaud a successful transmission.NASA

Fitting the Budget

The biggest challenge was devising a system that fit the budget—a proprietary figure rivaling that of some computers on the ISS. The result was buying commercial, off-the-shelf avionics, laser, tracking, and receiver electronics, and sealing them in a pressurized, cooled container that maintained an Earthlike environment. Fans cooled the electronics by circulating the encased air against a metal heat sink exposed to the -450˚F temperature of space.

"Typically, on a flight like this, we’d have a bigger budget and more robust avionics," said Daniel Zayas, OPALS’ thermal lead engineer. "We had to purchase components that weren’t designed for space—not hardened against radiation, don’t have a high capability in terms of temperatures, designed to work in a lab—and create a suitable environment. There was no precedent for this configuration in a JPL flight project. We were making it up as we went along, which was actually fun, because we could make up our own rules."

In April, the SpaceX Dragon carried the payload to the ISS where it was mounted externally. This artist's concept shows the OPALS laser beaming data to Earth from the ISS.NASA

Waiting for the ISS

The group gazed back and forth between the clock and an array of computers displaying Matrix-like numbers. At 8:22 p.m., a shout, "The ISS is here!," sent a handful of folks running outside in time to catch the tiny white dot smoothly traversing the sky. Then, a white dot with a circle beamed onto one of the monitors. "We’re in!"

Video of ISS over Vermont, courtesy of computer systems engineer Scott Turnbull

As the ISS traveled across the sky, the ground telescope at the nearby Table Mountain Observatory transmitted a laser beacon to the OPALS flight system, which locked on it, before beaming the video data via laser to the observatory ground receiver, which then transmitted it to JPL.

The downlink took 3.5 seconds (compared to the 10 to 15 min. it would have taken by radio wave). But processing the signal took another nail-biting 20 minutes. When Hello World burst onscreen, the room erupted in applause.

The next two months will be spent testing system nuance. Although faster frequencies can carry more data, they scatter more easily. So where radio waves pass through clouds, lasers can’t. The OPALS team will experiment with the level of cloud cover lasers can penetrate, minimum ISS elevation to successfully transmit, and downlinks to foreign ground stations in Japan, Spain, and Germany.

NASA, meanwhile has a mission in the works to demonstrate—in about four years—an optical relay communications between satellites, then to Earth, paving the way for optical transmissions from other planets. "Then you’re suddenly sending HD video back from Mars instead of simple picture snapshots," says Abrahamson.

Check out the slide show above for a behind-the-scenes look at the OPALS maiden demonstration.

[Photos by Susan Karlin]

Add New Comment